

# **Computational Chemistry using Gaussian: an Introduction**

Adhitya Gandaryus Saputro

# Computational chemistry using Gaussian

## *Gaussian Features at a Glance*

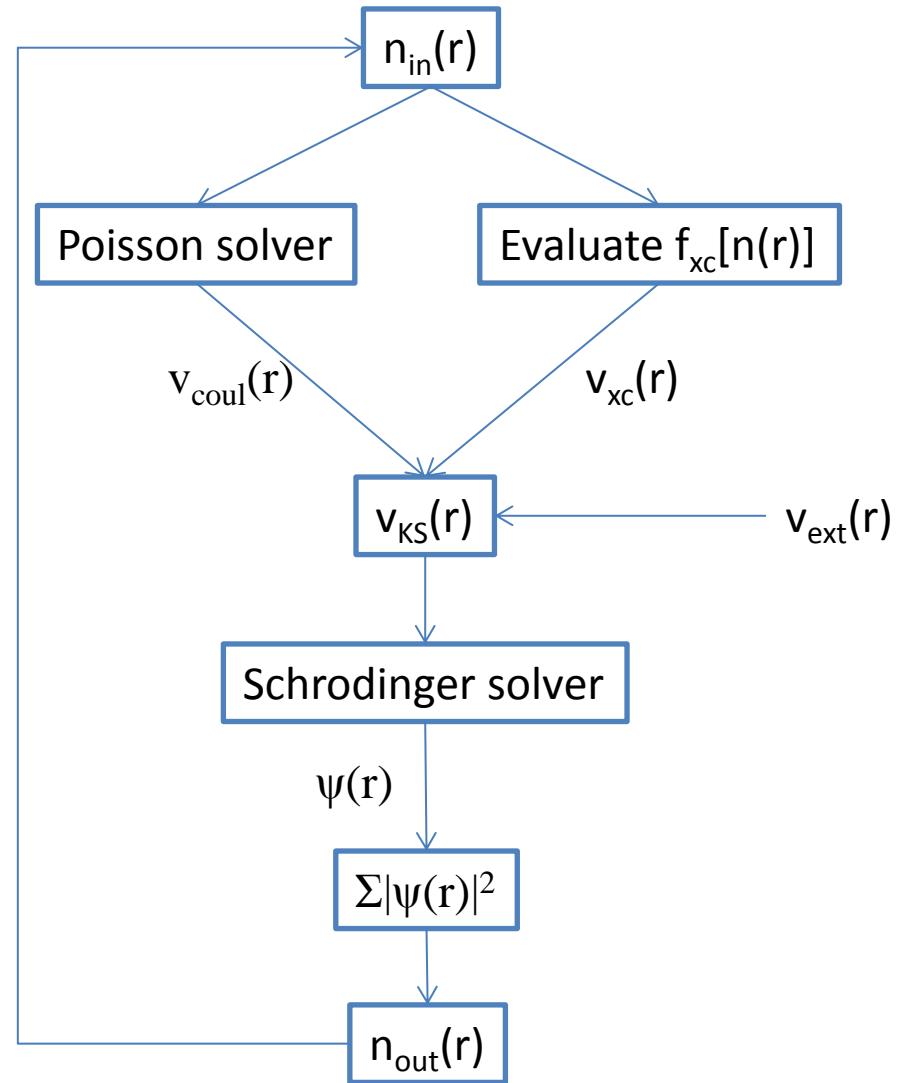
1. Model Chemistries: MM, semiempiric, HF, MP2,DFT, CC,based..
2. Geometry Optimizations ,Transition state, Reaction Modeling
3. Vibrational Analysis
4. Self-Consistent Reaction Field Solvation Models
5. Molecular Properties: population analysis, electrostatic potential, electronic density, etc.
6. ONIOM Calculations (QM/MM)
7. Excited States
- .
- .
- .

# Different Levels of *Ab Initio* Calculations

1. Hartree-Fock (HF)
  - The simplest *ab initio* calculation
  - **No electron correlation**
2. The Møller-Plesset Perturbation Theory (MP-n)
3. **Density Functional Theory (DFT)**
4. Configuration Interaction (CIS,CISD, FCI)
5. Coupled cluster (CCSD,CCSD(T),...)

# Methods availabilities in GAUSSIAN

|                                  | SP,<br>Scan | Opt, Force,<br>BOMD | Freq | IRC | ADMP | Polar | Stable | ONIOM | SCRF | PBC |
|----------------------------------|-------------|---------------------|------|-----|------|-------|--------|-------|------|-----|
| Molecular Mechanics              | *           | *                   | *    |     |      |       |        | *     |      |     |
| AM1, PM3 (etc.)                  | *           | *                   | num  | *   |      |       |        | *     |      |     |
| HF                               | *           | *                   | *    | *   | *    | *     | *      | *     | *    | *   |
| DFT methods                      | *           | *                   | *    | *   | *    | *     | *      | *     | *    | *   |
| CASSCF                           | *           | *                   | *    | *   |      | *     |        | *     | *    |     |
| MP2                              | *           | *                   | *    | *   |      | *     |        | *     |      |     |
| MP3, MP4(SDQ)                    | *           | *                   |      | *   |      |       |        | *     |      |     |
| MP4(SDTQ), MP5                   | *           |                     |      |     |      |       |        | *     |      |     |
| QCISD, CCD, CCSD                 | *           | *                   |      | *   |      |       |        | *     |      |     |
| QCISD(T) or (TQ)                 | *           |                     |      |     |      |       |        | *     |      |     |
| BD                               | *           |                     |      |     |      |       |        | *     |      |     |
| OVGF                             | *           |                     |      |     |      |       |        |       |      |     |
| CBS, G <sub>n</sub> , W1 methods | *           |                     |      |     |      |       |        |       |      |     |
| CIS                              | *           | *                   | *    | *   |      | *     |        | *     | *    |     |
| TD                               | *           |                     |      |     |      |       |        | *     | *    |     |
| ZINDO                            | *           |                     |      |     |      |       |        | *     |      |     |
| CI                               | *           | *                   |      | *   |      |       |        | *     |      |     |
| GVB                              | *           | *                   |      | *   |      |       |        | *     |      |     |


# DFT: Solving Kohn-Sham Equation

SCF procedure: solving single electron Schrodinger-like equations for the molecular orbitals

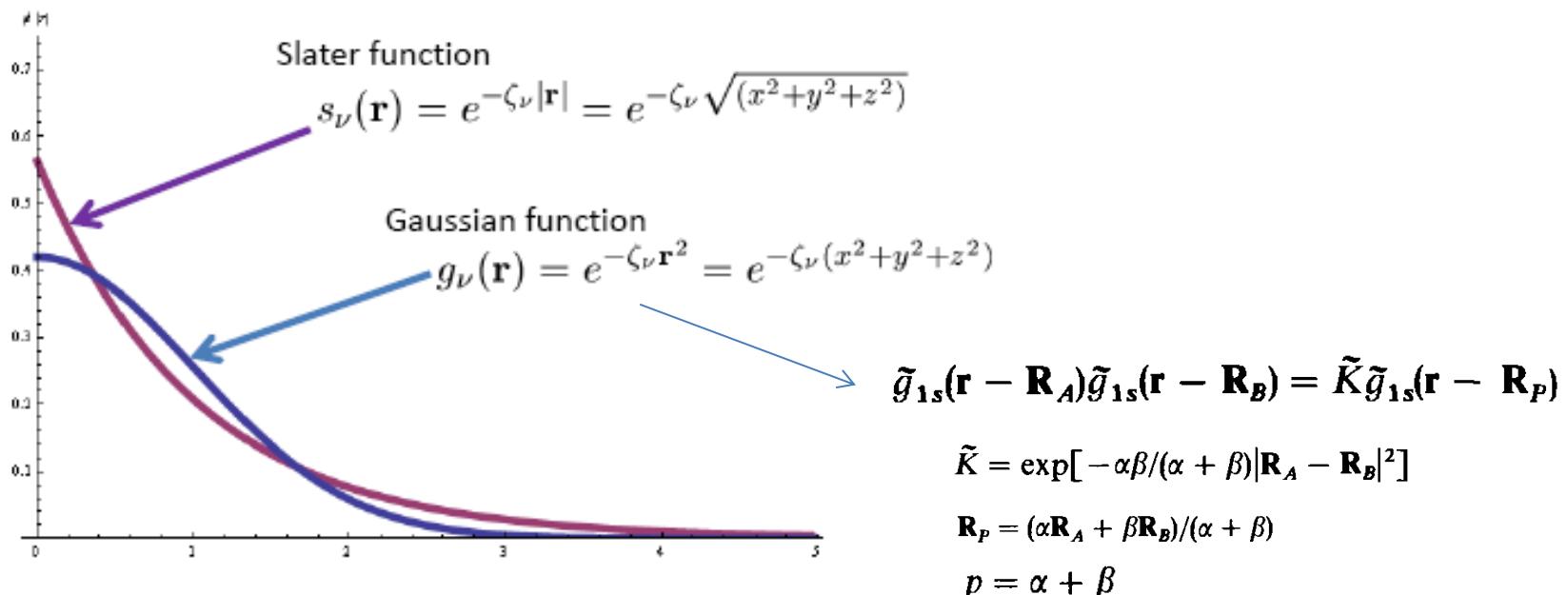
$$\left( -\frac{1}{2} \nabla^2 + V_{KS}(\mathbf{r}) \right) \psi_j(\mathbf{r}) = \varepsilon_j \psi_j(\mathbf{r})$$

$$V_{KS}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + V_{\text{Coul}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})$$

$$= V_{\text{ext}}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{\text{xc}}}{\delta n}$$



# Basis Function


molecular (spatial) orbital  $\longrightarrow \psi_i(\mathbf{r}) = \sum_{\alpha=1}^{N_{BF}} G_{\alpha}(\mathbf{r}) C_{\alpha i}$

↑  
basis function

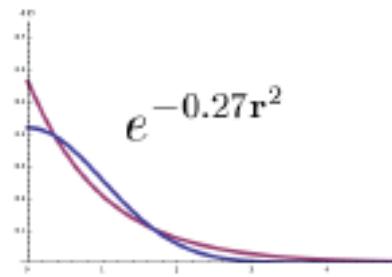
**Slater functions** are very suitable for expanding AOs, because they have correct shape:

- Near the nucleus
- Far from nucleus (decay like  $e^{-ar}$ )

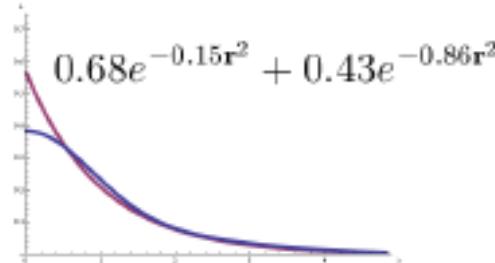
**Gaussian functions** are preferred in practice  $\rightarrow$  easy to calculate molecular integrals



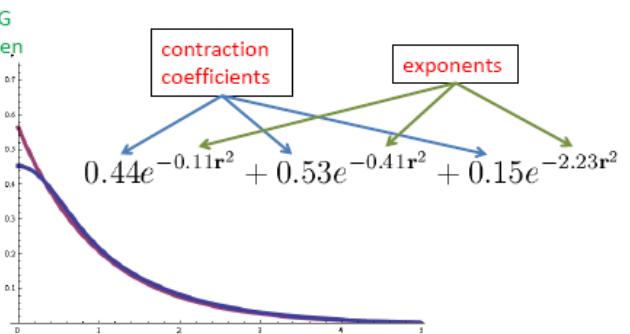
# Contracted Gaussian Basis Sets (CGs)


Fixed linear combinations of primitive Gaussian function

$$G_{\alpha}(\mathbf{r}) = \sum_{\nu=1}^{N_{\alpha}} c_{\nu} g_{\nu}(\mathbf{r})$$


Simplest basis sets: STO-nG  
approximate STO orbitals by n-CGs

1s orbital of H atom

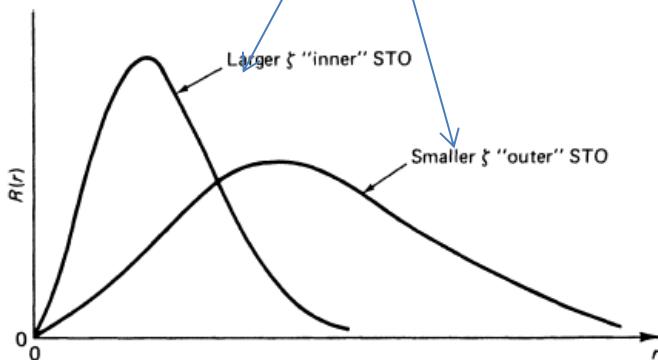

**STO-1G**



**STO-2G**



**STO-3G**




# Bonding with neighboring atoms

Split valence basis sets

Ex: 6-31G

For core electrons



Polarized basis sets

Ex: 6-31G\*\*

Add  $p$  character into  $1s$  orbital of H  $\rightarrow$  s-p linear combination  
Add  $d$  character into  $p$  orbitals  $\rightarrow$  allow to change shape

diffuse basis sets

Ex: 6-31+G\*

basis set augmented with a set of diffuse s- and p-type gaussian functions on each heavy atom, to permit representation of diffuse electronic distribution, as in anions. Hydrogen bond

|                          |                                 |                                 |                                 |
|--------------------------|---------------------------------|---------------------------------|---------------------------------|
| 3-21g                    | aug-cc-pvqz                     | cc-pvtzfi_sf_fw                 | lanl2dzdp_ecp_polarization      |
| 3-21++g                  | aug-cc-pvqz_diffuse             | cc-pvtzfi_sf_lc                 | lanl2dz_ecp                     |
| 3-21gs                   | aug-cc-pvt+dz                   | cc-pvtzfi_sf_sc                 | mclean_chandler_vtz             |
| 3-21++gs                 | aug-cc-pvt+dz_diffuse           | cc-pvtz-fit2-1                  | midi!                           |
| 3-21gsp                  | aug-cc-pvtz                     | cc-pvtzpt_sf_fw                 | midi_huzinaga                   |
| 3-21gs_polarization      | aug-cc-pvtz_diffuse             | cc-pvtzpt_sf_lc                 | mini_huzinaga                   |
| 4-22gsp                  | bauschlicher_ano                | cc-pvtzpt_sf_sc                 | mini_scaled                     |
| 4-31g                    | binning-curtiss_ld_polarization | cc-pvtzseg-opt                  | nasa_ames_ano                   |
| 6-311g                   | binning-curtiss_df_polarization | chipman_dzp_+_diffuse           | nasa_ames_cc-pcv5z              |
| 6-311++g2d_2p            | binning_curtiss_sv              | core_val._functions_cc-pcv5z    | nasa_ames_cc-pcvqz              |
| 6-311g2df_2pd            | binning_curtiss_svp             | core_val._functions_cc-pcv6z    | nasa_ames_cc-pcvtz              |
| 6-311++g3df_3pd          | binning_curtiss_vtz             | core_val._functions_cc-pcvdz    | nasa_ames_cc-pv5z               |
| 6-311gs                  | binning_curtiss_vtzp            | core_val._functions_cc-pcvqz    | nasa_ames_cc-pvqz               |
| 6-311+gs                 | blaudeau_polarization           | core_val._functions_cc-pcvtz    | nasa_ames_cc-pvtz               |
| 6-311gs_polarization     | cc-pcv5z                        | crenbl_ecp                      | partridge_uncontr._1            |
| 6-311gss                 | cc-pcv6z                        | crenbs_ecp                      | partridge_uncontr._2            |
| 6-311++gss               | cc-pcvdz                        | d-aug-cc-pv5z                   | partridge_uncontr._3            |
| 6-311gss_polarization    | cc-pcvqz                        | d-aug-cc-pv5z_diffuse           | pople_2d_2p_polarization        |
| 6-31g                    | cc-pcvtz                        | d-aug-cc-pv6z                   | pople_2df_2pd_polarization      |
| 6-31++g                  | cc-pv5+dz                       | d-aug-cc-pv6z_diffuse           | pople_3df_3pd_polarization      |
| 6-31g3df_3pd             | cc-pv5z                         | d-aug-cc-pvdz                   | pople-style_diffuse             |
| 6-31g-blaudeau           | cc-pv5z_dk                      | d-aug-cc-pvdz_diffuse           | pv6z                            |
| 6-31gs                   | cc-pv5zfi_sf_fw                 | d-aug-cc-pvqz                   | qmmm_zhang_3-21g_ecp            |
| 6-31+gs                  | cc-pv5zfi_sf_lc                 | d-aug-cc-pvqz_diffuse           | qmmm_zhang_6-31gs_ecp           |
| 6-31++gs                 | cc-pv5zfi_sf_sc                 | d-aug-cc-pvtz                   | sadlej_pvtz                     |
| 6-31gs-blaudeau          | cc-pv5zpt_sf_fw                 | d-aug-cc-pvtz_diffuse           | sbkjc_vdz_ecp                   |
| 6-31gs_polarization      | cc-pv5zpt_sf_lc                 | demon_coulomb_fitting           | sdb-aug-cc-pvqz                 |
| 6-31gs                   | cc-pv5zpt_sf_sc                 | dgauss_al_dft_coulomb_fitting   | sdb-aug-cc-pvqz_diffuse         |
| 6-31++gss                | cc-pv6+dz                       | dgauss_al_dft_exchange_fitting  | sdb-aug-cc-pvtz                 |
| 6-31gss_polarization     | cc-pv6z                         | dgauss_a2_dft_coulomb_fitting   | sdb-aug-cc-pvtz_diffuse         |
| ahlrichs_coulomb_fitting | cc-pvdt+dz                      | dgauss_a2_dft_exchange_fitting  | sdb-cc-pvqz                     |
| ahlrichs_polarization    | cc-pvdz                         | dhms_polarization               | sdb-cc-pvtz                     |
| ahlrichs_pvdz            | cc-pvdz_dk                      | dunning-hay_diffuse             | sto-2g                          |
| ahlrichs_tzv             | cc-pvdzfi_sf_fw                 | dunning-hay_double_rydberg      | sto-3g                          |
| ahlrichs_vdz             | cc-pvdzfi_sf_lc                 | dunning-hay_rydberg             | sto-3gs                         |
| ahlrichs_vtz             | cc-pvdzfi_sf_sc                 | dz_+_double_rydberg_dunning-hay | sto-3gs_polarization            |
| aug-cc-pcv5z             | cc-pvdz-fit2-1                  | dz_dunning                      | sto-6g                          |
| aug-cc-pcvdz             | cc-pvdzpt_sf_fw                 | dzp_+_diffuse_dunning           | stuttgart_rlc_ecp               |
| aug-cc-pcvqz             | cc-pvdzpt_sf_lc                 | dzp_dunning                     | stuttgart_rsc_1997_ecp          |
| aug-cc-pcvtz             | cc-pvdzpt_sf_sc                 | dzp_+_rydberg_dunning           | stuttgart_rsc_ano_ecp           |
| aug-cc-pv5+dz            | cc-pvdzseg-opt                  | dz_+_rydberg_dunning            | stuttgart_rsc_segmented_ecp     |
| aug-cc-pv5+dz_diffuse    | cc-pvq+dz                       | dzvp2_dft_orbital               | sv_+_double_rydberg_dunning-hay |
| aug-cc-pv5z              | cc-pvqz                         | dzvp_dft_orbital                | sv_dunning-hay                  |
| aug-cc-pv5z_diffuse      | cc-pvqz_dk                      | feller_misc._cvdz               | svp_+_diffuse_dunning-hay       |
| aug-cc-pv6+dz            | cc-pvqzfi_sf_fw                 | feller_misc._cvqz               | svp_+_diffuse_+_rydberg         |
| aug-cc-pv6+dz_diffuse    | cc-pvqzfi_sf_lc                 | feller_misc._cvtz               | svp_dunning-hay                 |
| aug-cc-pv6z              | cc-pvqzfi_sf_sc                 | gamess_pvtz                     | svp_+_rydberg_dunning-hay       |
| aug-cc-pv6z_diffuse      | cc-pvqzpt_sf_fw                 | gamess_vtz                      | sv_+_rydberg_dunning-hay        |
| aug-cc-pvd+dz            | cc-pvqzpt_sf_lc                 | glendening_polarization         | tz_dunning                      |
| aug-cc-pvd+dz_diffuse    | cc-pvqzpt_sf_sc                 | hay-wadt_mb_n+1_ecp             | tzvp_dft_orbital                |
| aug-cc-pvdz              | cc-pvqzseg-opt                  | hay-wadt_vdz_n+1_ecp            | wachters+f                      |
| aug-cc-pvdz_diffuse      | cc-pvt+dz                       | hondo7_polarization             | wtbs                            |
| aug-cc-pvq+dz            | cc-pvtz                         | huzinaga_polarization           |                                 |
| aug-cc-pvq+dz_diffuse    | cc-pvtz_dk                      | lanl2dzdp_ecp                   |                                 |

# Basis sets limit

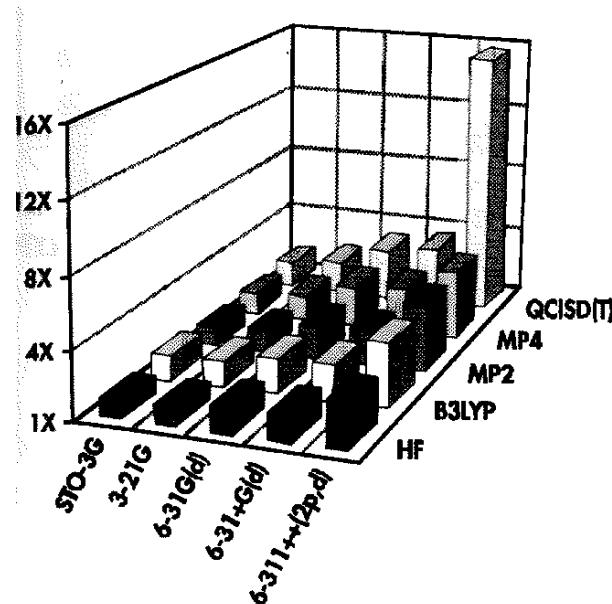
- Basis set is an approximation to solve the KS equation
- The MOs obtained are solutions of the KS equation only within the “function space” of the basis set used
- A complete basis set can represent exactly any MOs
- However, complete basis sets are not practical for calculations (due to the size of the basis sets)

# Exchange correlation potential

**Molecular Mechanics**

**Ground State Semi-Empirical**

**Hartree-Fock**


**Density Functional Theory**

**EXCHANGE FUNCTIONALS:** Slater, Xa, Becke 88, Perdew-Wang 91, Barone-modified PW91, Gill 96, OPTX, TPSS, BRx, PKZB, wPBEh, PBEh

**CORRELATION FUNCTIONALS:** VWN, VWN5, LYP, Perdew 81, Perdew 86, Perdew-Wang 91, PBE, B95, TPSS, KCIS, BRC, PKZB

**OTHER PURE FUNCTIONALS:** VSXC, HCTH functional family

**HYBRID METHODS:** B3LYP, B3P86, P3PW91, B1 and variations, B98, B97-1, B97-2, PBE1PBE, HSEh1PBE and variations, O3LYP, TPSSh, BMK, M05 & M06 and variations, X3LYP; user-configurable hybrid methods



# Choosing methods and basis sets

SCF dipole moments (a.u.) for the ten-electron series and the standard basis sets

| Basis set     | NH <sub>3</sub>    | H <sub>2</sub> O   | FH                 |
|---------------|--------------------|--------------------|--------------------|
| STO-3G        | 0.703              | 0.679              | 0.507              |
| 4-31G         | 0.905              | 1.026              | 0.897              |
| 6-31G*        | 0.768              | 0.876              | 0.780              |
| 6-31G**       | 0.744              | 0.860              | 0.776              |
| Near-HF-limit | 0.653 <sup>a</sup> | 0.785 <sup>b</sup> | 0.764 <sup>c</sup> |
| Experiment    | 0.579              | 0.728              | 0.716              |

<sup>a</sup> A. Rauk, L. C. Allen, and E. Clementi, *J. Chem. Phys.* **52**: 4133 (1970).

<sup>b</sup> B. J. Rosenberg and I. Shavitt, *J. Chem. Phys.* **63**: 2162 (1975).

<sup>c</sup> P. E. Cade and W. M. Huo, *J. Chem. Phys.* **45**: 1063 (1966).

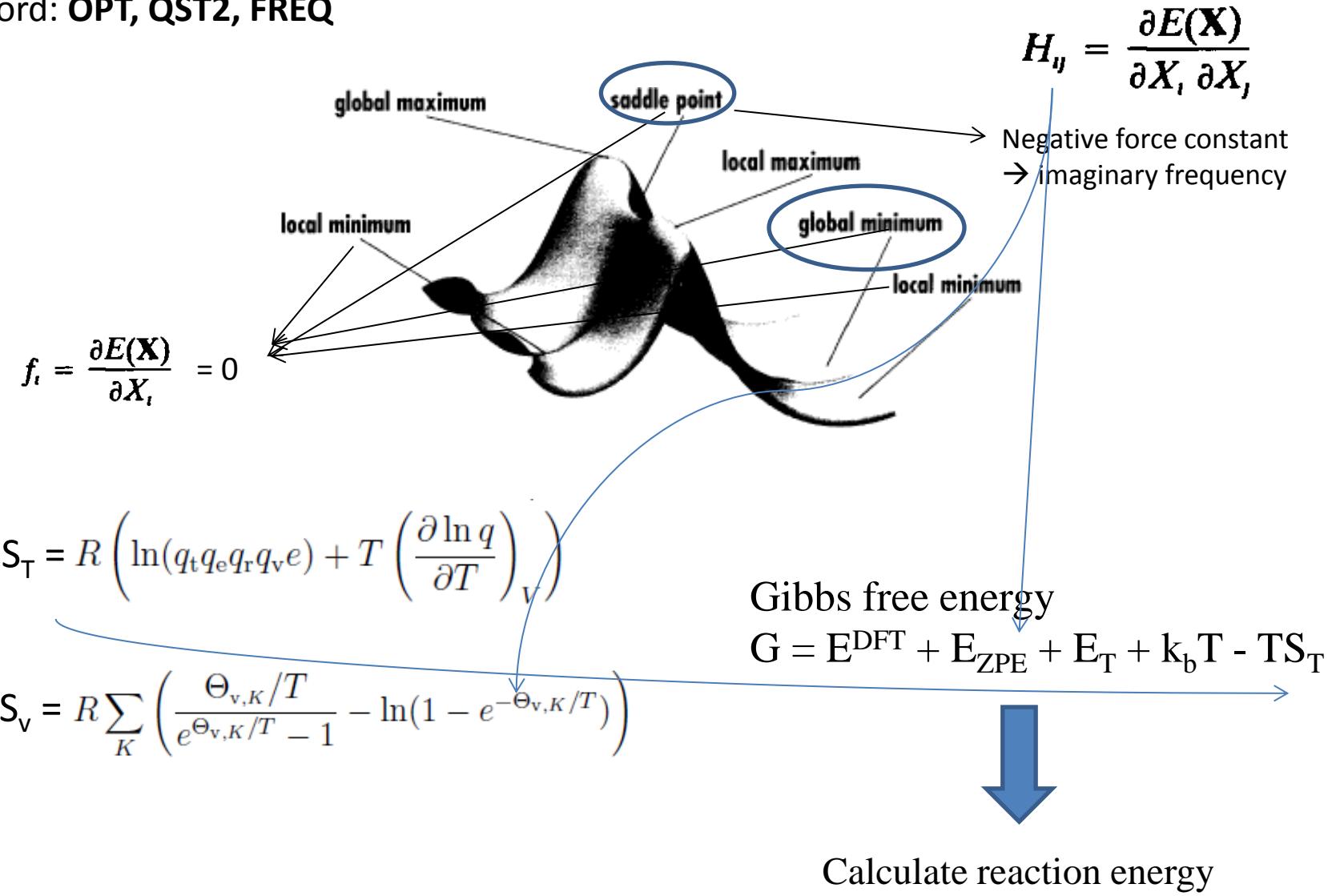
SCF equilibrium bond lengths (a.u.) of the ten-electron series

| Basis set     | CH <sub>4</sub>    | NH <sub>3</sub>    | H <sub>2</sub> O   | FH                 |
|---------------|--------------------|--------------------|--------------------|--------------------|
| STO-3G        | 2.047              | 1.952              | 1.871              | 1.807              |
| 4-31G         | 2.043              | 1.873              | 1.797              | 1.742              |
| 6-31G*        | 2.048              | 1.897              | 1.791              | 1.722              |
| 6-31G**       | 2.048              | 1.897              | 1.782              | 1.703              |
| Near-HF-limit | 2.048 <sup>a</sup> | 1.890 <sup>b</sup> | 1.776 <sup>c</sup> | 1.696 <sup>d</sup> |
| Experiment    | 2.050              | 1.912              | 1.809              | 1.733              |

<sup>a</sup> W. Meyer, *J. Chem. Phys.* **58**: 1017 (1973).

<sup>b</sup> A. Rauk, L. C. Allen, and E. Clementi, *J. Chem. Phys.* **52**: 4133 (1970).

<sup>c</sup> B. J. Rosenberg, W. C. Ermler, and I. Shavitt, *J. Chem. Phys.* **65**: 4072 (1976).


<sup>d</sup> P. E. Cade and W. J. Huo, *J. Chem. Phys.* **47**: 614 (1967).

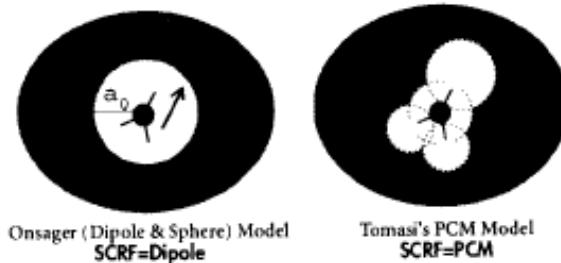


| Method | Carbon Dioxide |            |        | Carbon    | Oxygen    | D <sub>0</sub>            | Δ(Exp) |
|--------|----------------|------------|--------|-----------|-----------|---------------------------|--------|
|        | R(C-O)         | E          | ZPE    | E         | E         | (kcal·mol <sup>-1</sup> ) |        |
| HF     | 1.143          | -187.63418 | 0.0114 | -37.68086 | -74.78393 | 234.7                     | 147.2  |
| SVWN   | 1.171          | -187.61677 | 0.0116 | -37.56616 | -74.64334 | 472.1                     | -90.2  |
| SVWN5  | 1.172          | -187.18193 | 0.0116 | -37.45370 | -74.48842 | 464.2                     | -82.3  |
| BLYP   | 1.183          | -188.56306 | 0.0112 | -37.83202 | -75.04696 | 392.8                     | -10.9  |
| B3LYP  | 1.169          | -188.58094 | 0.0114 | -37.84628 | -75.06062 | 377.8                     | 4.1    |
| B3PW91 | 1.168          | -188.50695 | 0.0115 | -37.82569 | -75.03133 | 381.0                     | 0.9    |
| MP2    | 1.180          | -188.10775 | 0.0111 | -37.73297 | -74.88004 | 378.8                     | 3.1    |
| Exp.   | 1.162          |            |        |           |           | 381.9                     |        |

# Potential energy surface

Keyword: OPT, QST2, FREQ




# Solvation models

1. Super-molecule (large QM calculation)
2. Molecular Mechanics (difficult to treat bond breaking)
3. **Continuum models (Onsager, PCM,..)**

Explicit consideration of solvent molecules is **neglected**

Solvent effects are described in terms of macroscopic properties of the chosen solvent (e,  $\langle R_{\text{solvent}} \rangle$ )

4. Hybrid/mixed (i.e. ONIOM/PCM, QM/MM)



# Simple example: SCF calculation

Very simple and user friendly

Calculation method

```
#T RHF/6-31G(d) Test
```

Basis sets

My first Gaussian job: water single point energy

Charge ← 0 1

Spin multiplicity ← O -0.464 0.177 0.0  
H -0.464 1.137 0.0  
H 0.441 -0.143 0.0

Atoms

xyz coordinate

# output

Gaussian, Inc.  
Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

This is the official citation for the Gaussian 94 program, which should be included in its entirety in all papers presenting results obtained by running Gaussian 94 and Gaussian 94W.

Cite this work as:

Gaussian 94, Revision C.3,  
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill,  
B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith,  
G. A. Petersson, J. A. Montgomery, K. Raghavachari,  
M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman,  
J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe,  
C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres,  
E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox,  
J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart,  
M. Head-Gordon, C. Gonzalez, and J. A. Pople,  
Gaussian, Inc., Pittsburgh PA, 1995.

\*\*\*\*\*  
Gaussian 94: IBM-RS6000-G94RevC.3 26-Sep-1995  
25-Nov-1995  
\*\*\*\*\*

#T RHF/6-31G(d) Test

-----  
Water HF Energy

Symbolic Z-matrix:  
Charge = 0 Multiplicity = 1  
O -0.464 0.177 0.  
H -0.464 1.137 0.  
H 0.441 -0.143 0.

-----  
Z-MATRIX (ANGSTROMS AND DEGREES)  
CD Cent Atom Nl Length/X N2 Alpha/Y N3 Beta/Z J  
-----  
1 1 O 0 -.464000 .177000 .000000  
2 2 H 0 -.464000 1.137000 .000000  
3 3 H 0 .441000 -.143000 .000000

-----  
Framework group CS[SG(H2O)]  
Deg. of freedom 3  
Standard orientation:

-----  
Center Atomic Coordinates (Angstroms)  
Number Number X Y Z  
-----  
1 8 .000000 .110843 .000000  
2 1 .783809 -.443452 .000000  
3 1 -.783809 -.443294 .000000

The route section, title section, and molecule specification from the input file are displayed next.

The standard orientation is the coordinate system used internally by the program as it performs the calculation, chosen to optimize performance. The origin is placed at the molecule's center of nuclear charge. Here, the oxygen atom sits on the  $Y$ -axis above the origin, and the two hydrogen atoms are placed below it in the  $XY$  plane.

This line indicates the predicted energy computed by our single point calculation. It also indicates the values of the convergence criteria in the SCF computation. Appendix A discusses the iterative nature of SCF methods in more detail.

A Mulliken population analysis follows the SCF energy results. This analysis partitions the charge on the molecule by atom.

The section labelled Total atomic charges indicates the estimated total charge on each atom in the molecule. Here, the oxygen atom has a negative charge balancing the slight positive charge on each of the hydrogen atoms.

This section gives the dipole moment for this molecule, in the standard orientation. This dipole moment has only a negative  $Y$  component, and its magnitude is 1.69 deby. By convention, the dipole moment "points" in the direction of positive charge. Referring back to the standard orientation for this molecule, we note that the oxygen atom is situated on the positive  $Y$ -axis. This indicates that the dipole moment points away from the oxygen atom, toward the positively-charged portion of the molecule.

Successful Gaussian jobs end with a quotation chosen at random from a collection stored internally.

CPU time and other resource usage information is presented at the conclusion of the job.

Rotational constants (GHZ): 919.1537631 408.1143172 282.6255042  
Isotopes: O-16, H-1, H-1

19 basis functions 36 primitive gaussians  
5 alpha electrons 5 beta electrons  
nuclear repulsion energy 9.1576073710 Hartrees.

Projected INDO Guess.

Initial guess orbital symmetries:

Occupied (A') (A') (A' (A') (A')  
Virtual (A') (A') (A') (A') (A") (A') (A') (A') (A')  
(A') (A') (A") (A')

Warning! Cutoffs for single-point calculations used.

SCF Done: E(RHF) = -76.0098706218 A.U. after 6 cycles  
ConvG = .3332D-04 -V/T = 2.0027  
S\*\*2 = .0000

\*\*\*\*\*  
Population analysis using the SCF density.  
\*\*\*\*\*

Orbital Symmetries:

Occupied (A') (A') (A') (A') (A")  
Virtual (A') (A') (A') (A') (A") (A') (A') (A") (A')  
(A") (A') (A') (A')

The electronic state is 1-A'.

Alpha occ. eigenvals-- -20.55796 -1.33618 -.71426 -.56023 -.49562  
Alpha virt. eigenvals-- .21061 .30388 1.04585 1.11667 1.15963

Alpha virt. eigenvals-- 1.16927 1.38460 1.41675 2.03064 2.03551

Alpha virt. eigenvals -- 2.07410 2.62759 2.94215 3.97815

Condensed to atoms (all electrons):

Total atomic charges:

1 O -.876186  
2 H .438090  
3 H .438096

Sum of Mulliken charges= .00000

...  
Electronic spatial extent (au): <R\*\*2>= 18.9606

Charge= .0000 electrons

Dipole moment (Debye):

X= -.0001 Y= 2.1383 Z= .0000 Tot= 2.1383

Test job not archived.  
1\GINC-MJF\SP\RHF\6-31G(d)\H201\AEFRISCH\25-Nov-1995\0\# RHF/6-31G(d)

d) TEST\Water HF Energy\0,1\0,0,-0.464,0.177,0,\H,0,-0.464,1.137,0,\H,0,0.441,-0.143,0.\Version=IBM-RS6000-G94RevC.3\State=1-A'\HFE=-76.0098

706\RMSE=3.332e-05\|Dipole=0.6868725,0.4857109,0.\PG=CS [SG(H201)]\#\

Children are likely to live up to what you believe of them.

-- Lady Bird Johnson

Job cputime: 0 days 0 hours 0 minutes 5.8 seconds.

File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1

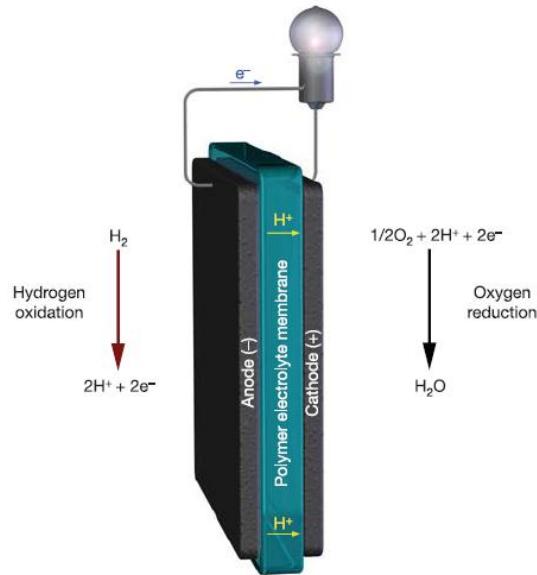
Normal termination of Gaussian 94

## **References:**

1. www.gaussian.org
2. Forseman, J. B., and E. Frisch. "Exploring Chemistry with Electronic Structure Methods, Gaussian." *Inc., Pittsburgh* (1996)
3. Donald A. McQuarrie and John D. Simon. "Physical Chemistry: A Molecular Approach" (1997)
4. Attila Szabo and Neil S. Ostlund. "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory" Dover (1996)

Case Study I:

# Theoretical Study of Biosynthetic reaction from Dopachrome to 5,6-Dihydroxyindole on Eumelanogenesis


(Will be distributed in the classroom)

Case Study II:

# Oxygen Reduction Reaction on Co-(6)Ppy Cluster

# Introduction

PEFC commercialization problems: Pt



- Co-Ppy-C <sup>[1]</sup> : high ORR activity , good stability
- Work well on other types of fuel cells (DBFC, DHFC) <sup>[2-3]</sup>

Detail ORR mechanism is **not clear**.

Interactions between the catalyst and  $O_2/H_2O_2$  molecules are unknown.

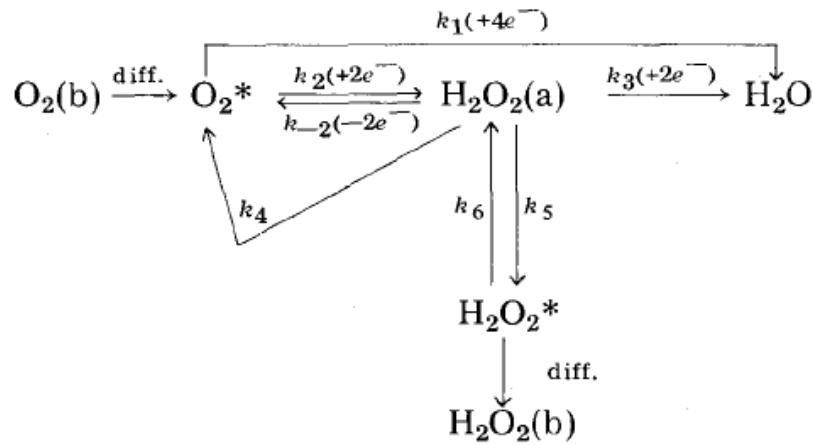
$H_2O_2$  formation is important information

If the two-electron reduction to  $H_2O_2$  predominates : The produced  $H_2O_2$  can not stay at the electrode → **diffuse into the environment** ; Degrades the performance of fuel cell (i.e., potential damage to the proton exchange membranes <sup>[5-6]</sup>)

[1] R. Bashyam and P. Zelenay, *Nature* **443** (2006), pp. 63–66

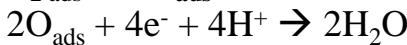
[2] H.Y. Qin, Z.X. Liu, W.X. Yin, J.K. Zhu and Z.P. Li, *J. Power Sources* **185** (2008),pp. 909-912

[3] K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi and T. Kobayashi, *Angew. Chem. Int. Ed.* **46** (2007), pp. 8024–8027

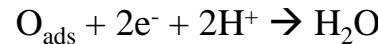

[4] K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi, J. Zhang: *Electrochimica Acta* **54** (2009) 4704–4711

[5] M. Aoki, H. Uchida and M. Watanabe, *Electrochim. Commun.* **8** (2006), p. 1509.

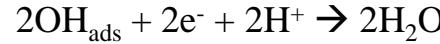
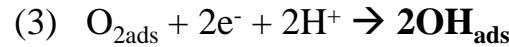
[6] J.L. Qiao, M. Saito, K. Hayamizu and T. Okada, *J. Electrochem. Soc.* **153** (2006), p. A967.


# Objective

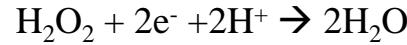
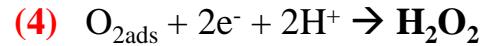
General scheme of oxygen reduction [1]




## A. Without $H_2O_2$ formation



possible reaction pathways



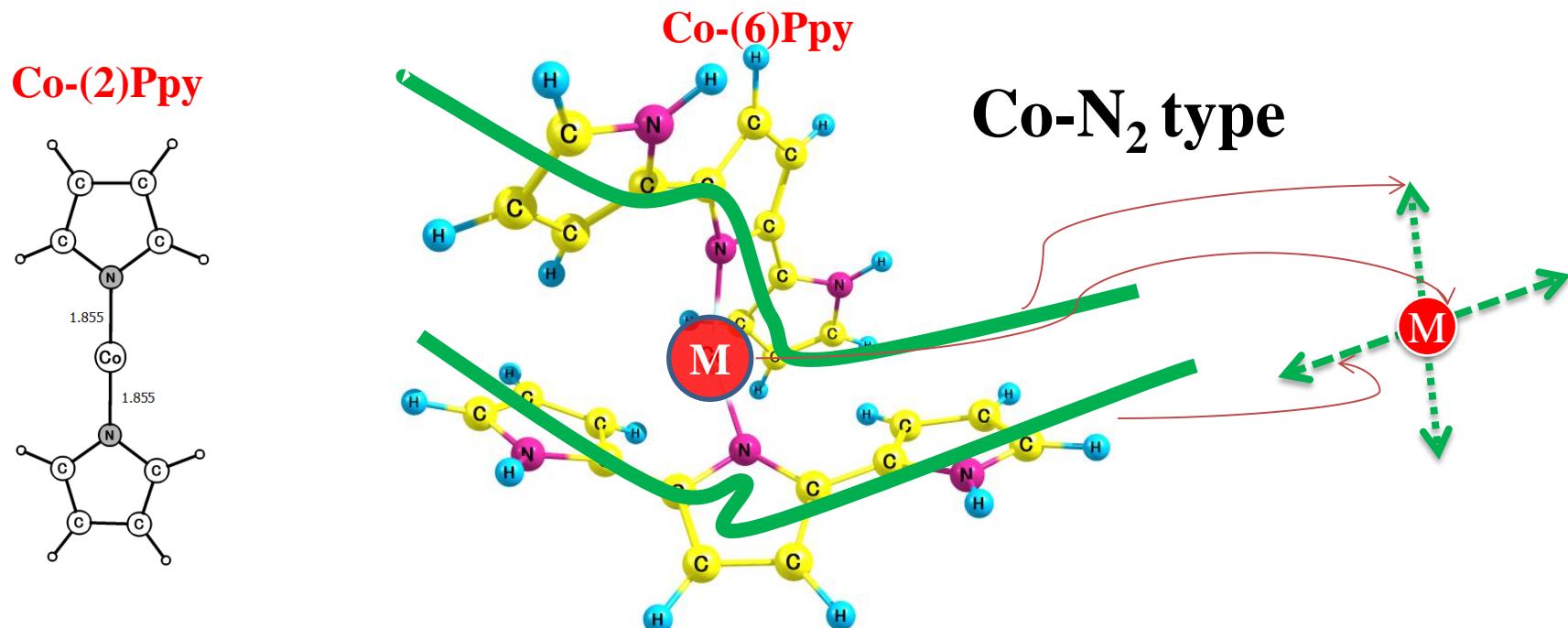


or



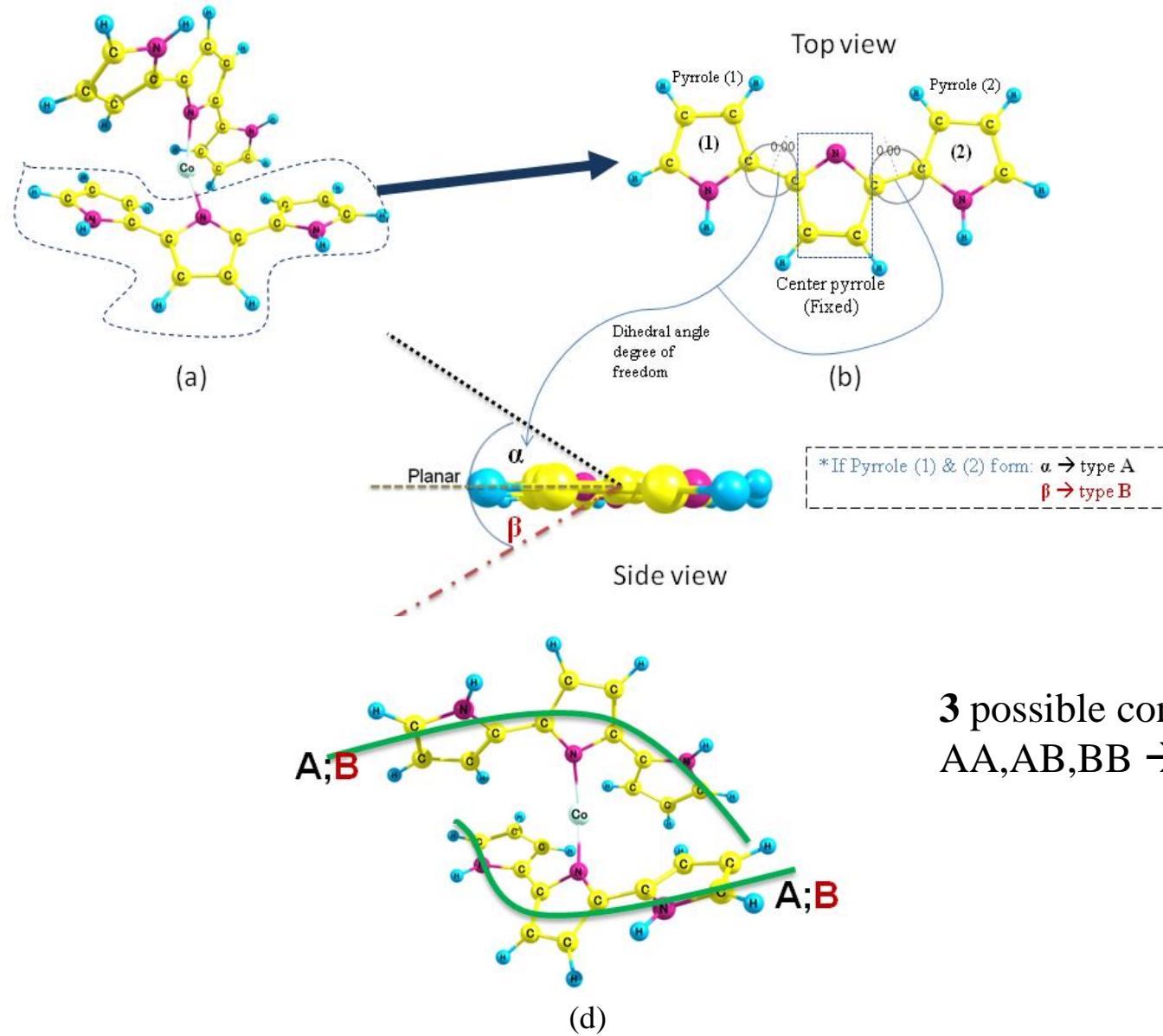
or



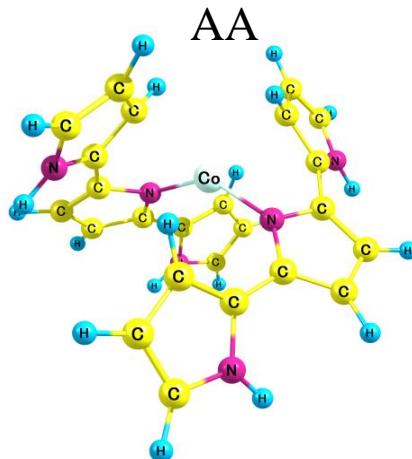
## B. With $H_2O_2$ formation



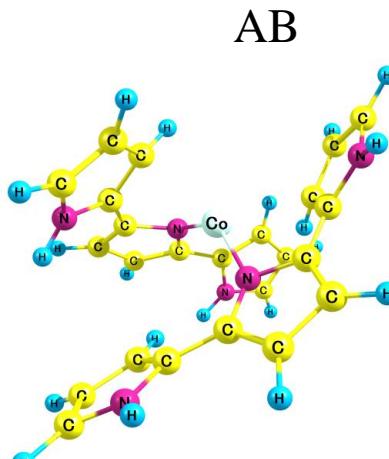

### Goal:


- 1) Fundamental understanding of the interactions between Co-Ppy and  $O_2/H_2O_2$  molecules (adsorption & dissociation)
- 2) Comparison of the potential energy for reaction (1), (2), (3), and (4)

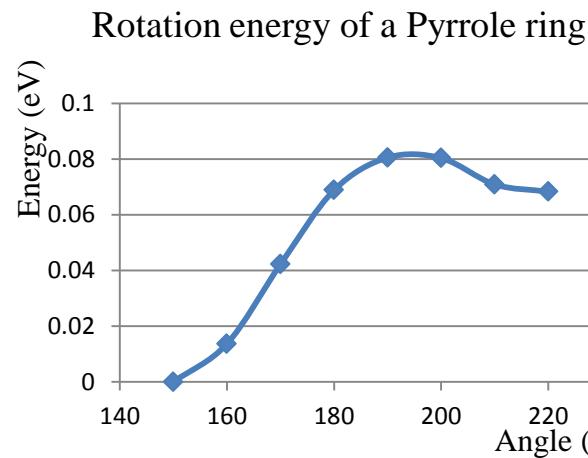
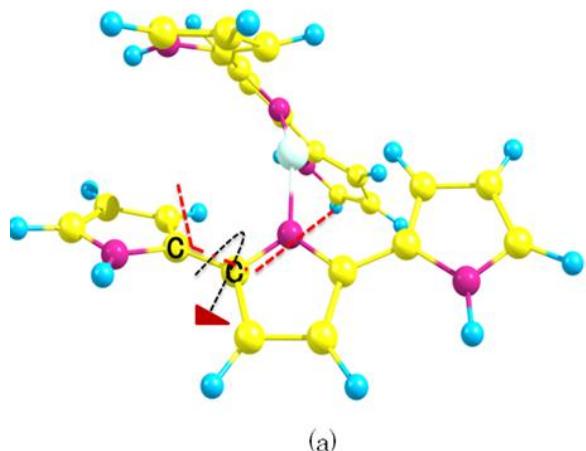
# Co-(6)Ppy : Cluster Model


1. DFT calculation using **Gaussian 03**
2. Hybrid exchange correlation functional and (6-31G(d,p)/LANL2DZ) → 6-311+G(d,p) basis sets were used
3. Polypyrrole → oligopyrrole (cluster model)
4. Unsupported Co-(6)Ppy cluster in the vacuum state



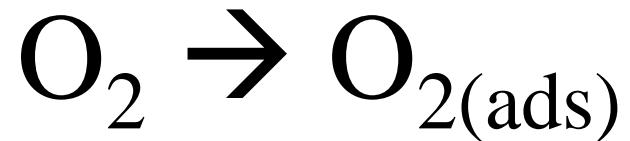

# Cluster Models





# Optimized Structure of Co-(6)Ppy



0.076eV

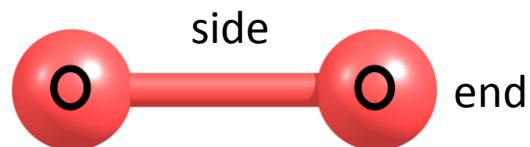



0eV



Easy to rotate !

# $O_2$ Adsorption on Co-(6)Ppy Clusters :

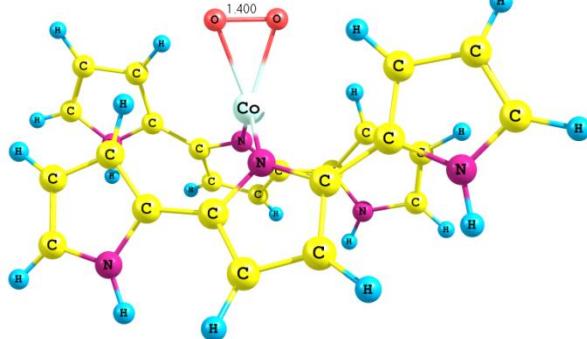



# Adsorption of $O_2$ on Co-(6)Ppy

Initial geometry



Co-6Pyrrole : AA;AB



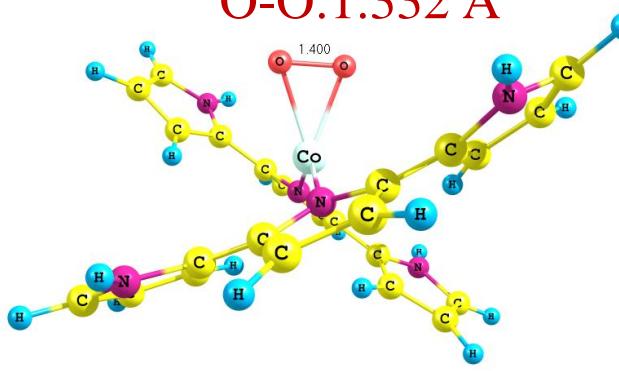

# $\text{O}_2$ Adsorption on The Clusters

O-O elongation :  
10.6%

**AA1**

O-O: 1.334 Å




0 eV

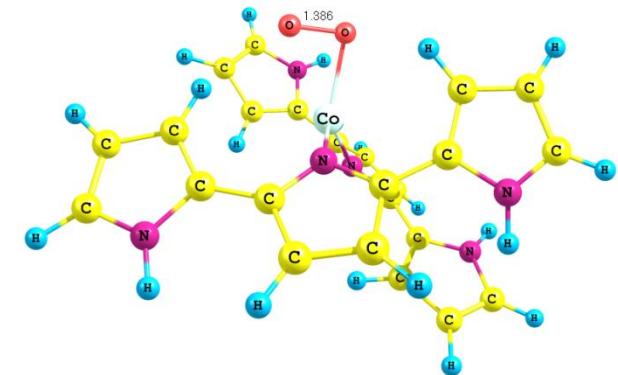
$E_{\text{ads}} = 0.48 \text{ eV}$

O-O elongation :  
10.4%

**AA2**

O-O: 1.332 Å

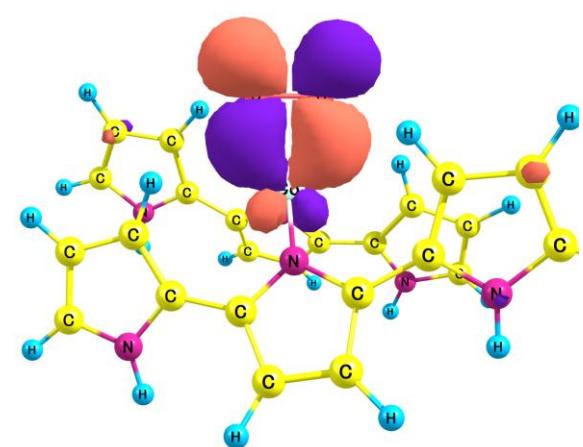



0.10 eV

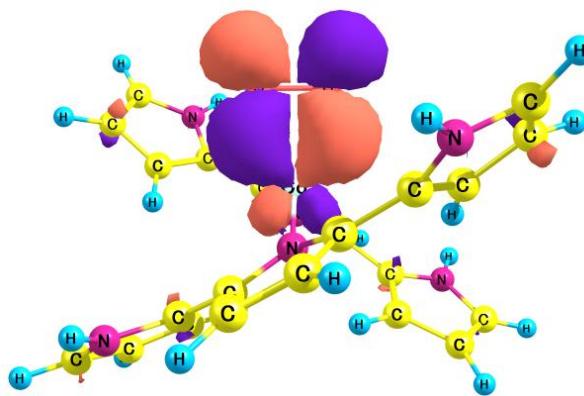
$E_{\text{ads}} = 0.37 \text{ eV}$

O-O elongation :  
9.5%

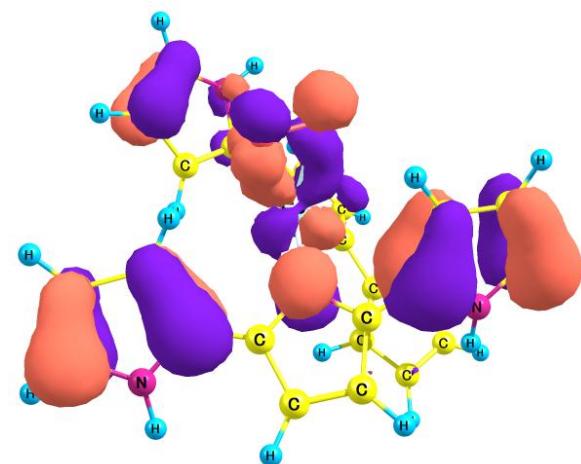
**AB**


O-O: 1.321 Å

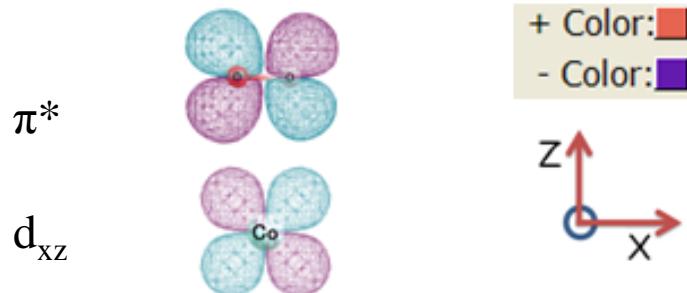



0.15 eV

$E_{\text{ads}} = 0.25 \text{ eV}$


# Adsorption mechanism




HOMO-4 (-6.65 eV)



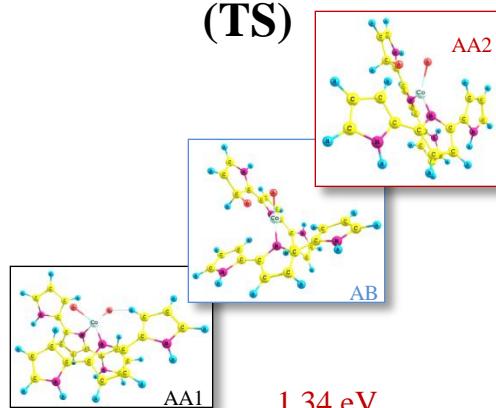
HOMO-4 (-6.38 eV)



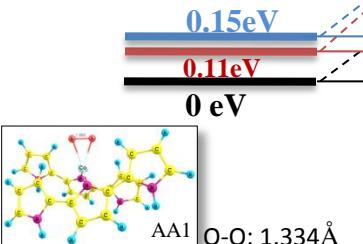
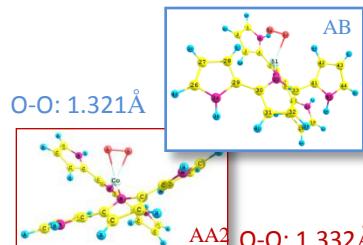
HOMO-4 (-6.29 eV)



| O <sub>2</sub> valence electron population (AB) |       |            |
|-------------------------------------------------|-------|------------|
| before                                          | after | difference |
| 12                                              | 12.65 | 0.65       |

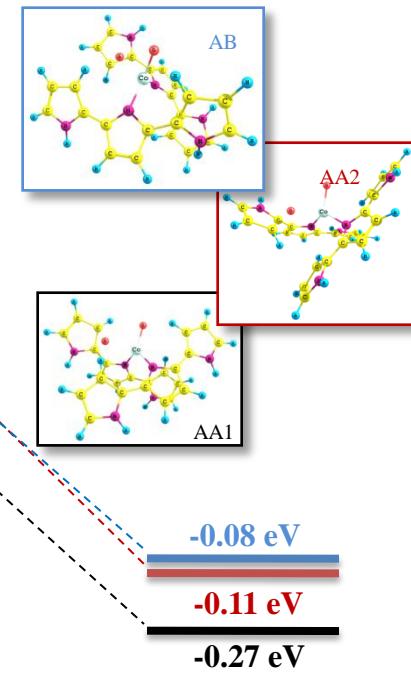

O-O elongation

# O<sub>2</sub> Dissociation


## Transition state

(TS)




## Initial state (IS)



$\Delta E = 1.24 \text{ eV}$   
 $\Delta E = 1.11 \text{ eV}$   
 $\Delta E = 0.89 \text{ eV}$

## Final state (FS)



# Comparison : O<sub>2</sub> dissociation energy

**Co- (6)Ppy (O<sub>2</sub> adsorption state: side-on)**

Co-6Pyrrole : **0.89 eV ~ 1.24 eV**

**Metal-Porphyrin (O<sub>2</sub> adsorption state: end-on)**

**1.65 eV - 3.13 eV [1]**

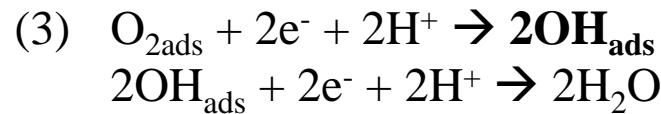
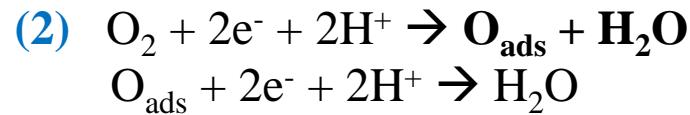
**Pt (111)**

Dissociation from precursion state **0.9 eV [2] ~ 1.7 eV [3]**

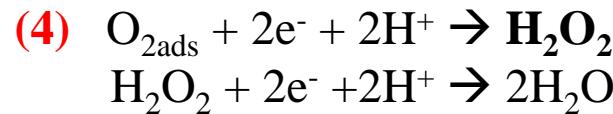
Dissociative adsorption **0.3 - 1.5 eV [4]**

**The ORR mechanism in Co-(6)Ppy system will prefer direct reduction process (without initial O<sub>2</sub> dissociation).**

[1] M. Tsuda, E. S. Dy, and H. Kasai . J. Chem. Phys. 122, 244719 2005

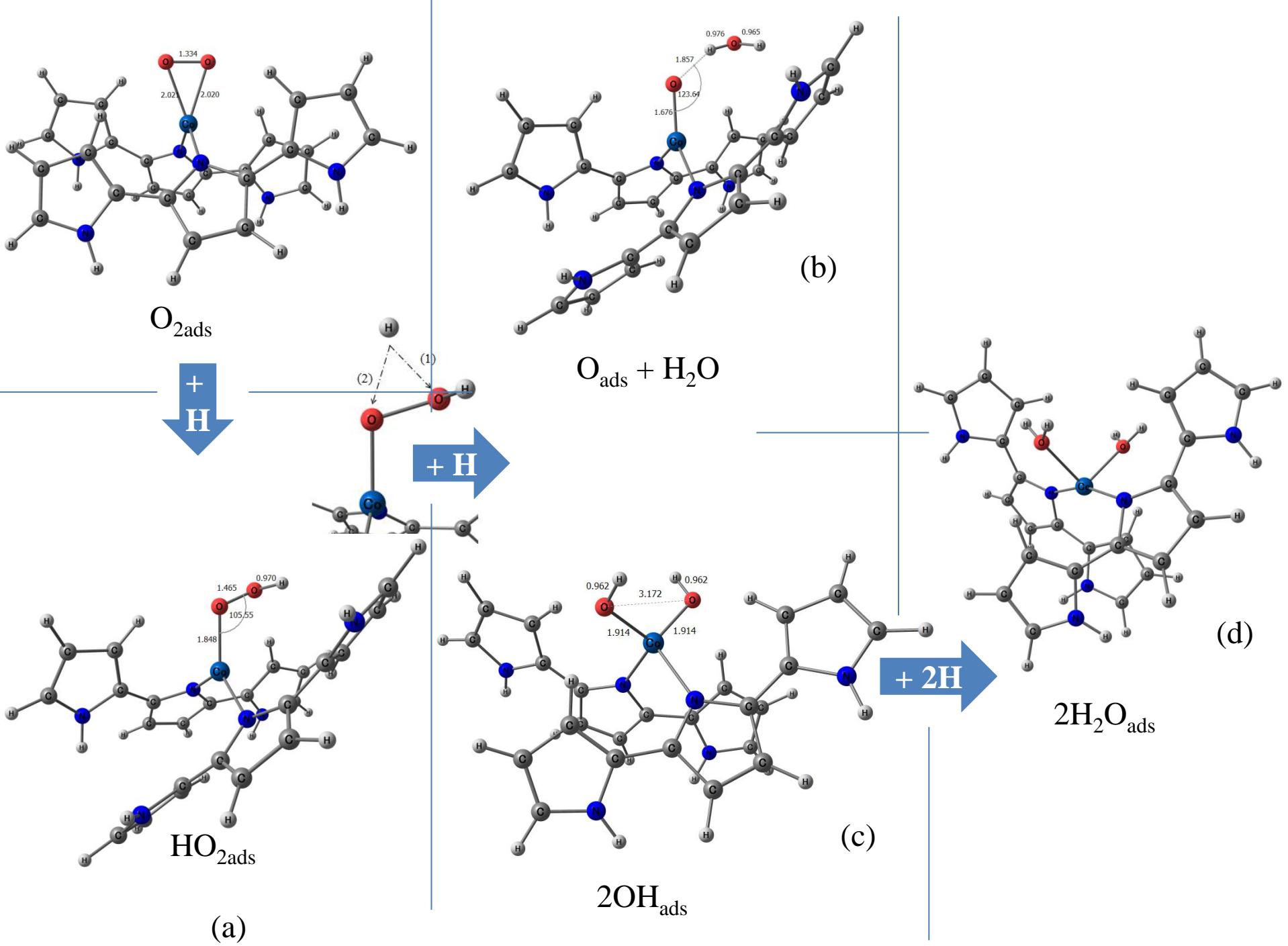


[2] A. Eichler, J. Hafner, Phys. Rev. Lett. 79, 4481 (1997)

[3] S. Yotsuhashi, Y. Yamada, W.A. Di'no, H. Nakanishi, H. Kasai, Phys. Rev. B 72, 033415 (2005)

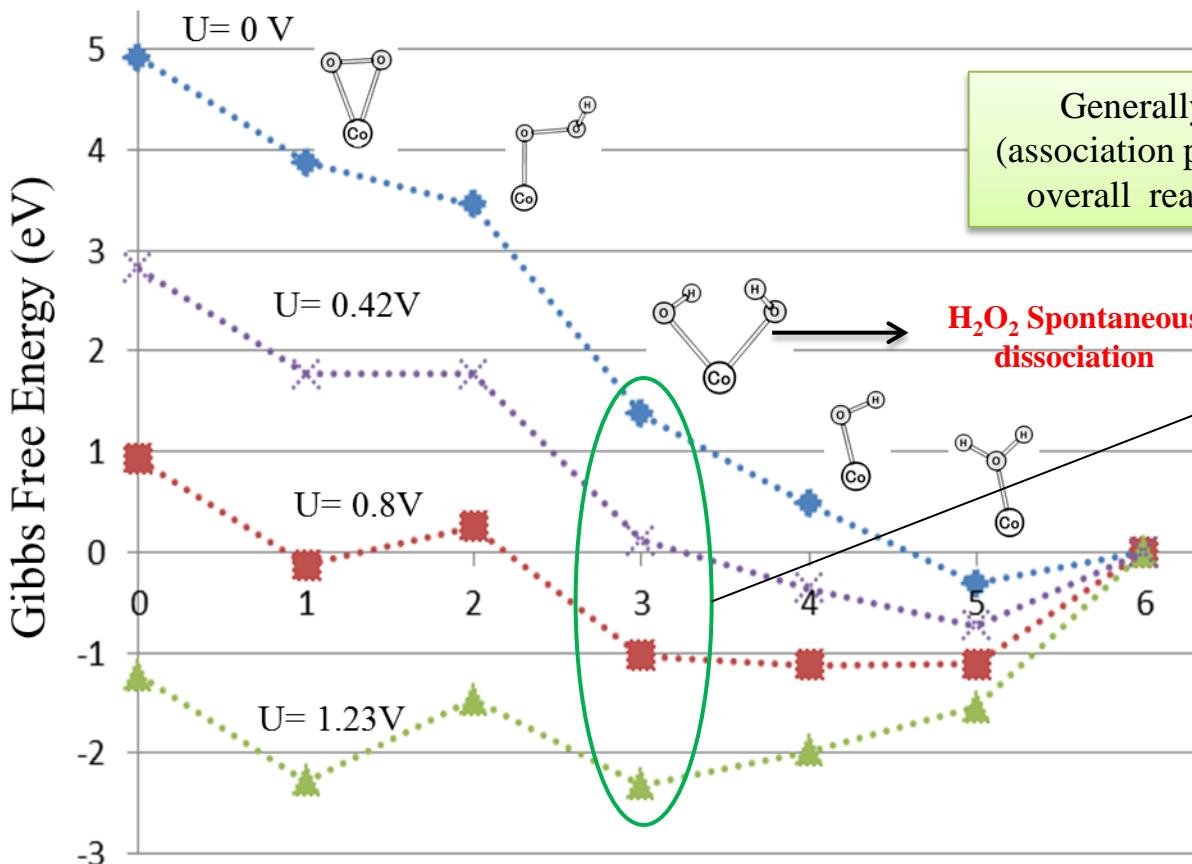

[4] A. Eichler, F. Mittendorfer, and J. Hafner, Phys. Rev. B. 62, 4744 (2000)

# $O_2$ reduction to $H_2O/H_2O_2$

Without  $H_2O_2$  formation



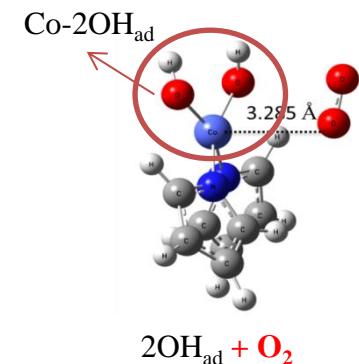

with  $H_2O_2$  formation




How ?

By adding 4H atoms **one by one** to the  $O_{2ads}$  on Co-(6)Ppy




# The Potential Energy Surface Profile for Water Formation Reaction <sup>[1]</sup> $\rightarrow$ 4e<sup>-</sup> pathway , but...



Generally, the direct O<sub>2</sub> reduction to water (association pathway) is very efficient, because the overall reaction is downhill at U= 0 – 0.42 V).

H<sub>2</sub>O<sub>2</sub> Spontaneous dissociation

$E_{ad}(2OH) = 2.70$  eV  
 $\rightarrow$  could result in OH poisoning !!



At Pt(111) (low coverage), the overall reaction is downhill at U= 0 – 0.78 V  
 $\rightarrow$  Pt(111) still better

O<sub>2</sub> weakly adsorbed on the Co-2OH<sub>ad</sub> site  
 $\rightarrow E_{O2ad} \sim 0.001$  eV.  
 **$\rightarrow$  OH poisoning<sup>[2]</sup>**

1. A.G. Saputro, F. Rusydi, H. Kasai, and H.K. Dipojono: *J. Phys. Soc. Jpn.* **81** (2012) 034703.
2. A.G. Saputro and H. Kasai, *in preparation*, 2013.

# Summary

1. We have studied various possible ORR mechanisms on the unsupported Co-(6)Ppy system in the vacuum state.
2. The  $O_2$  adsorption and elongation are induced from the interaction between  $d$  orbitals of Co and antibonding orbital of  $O_2$
3.  $O_2$  reduction to water via  $O_2$  dissociation is not favorable due to high dissociation energy
4. The direct  $O_2$  reduction to water (without initial  $O_2$  dissociation) is very efficient, because the overall reaction has downhill profile ( $U=0-0.42V$ )
5. While the  $H_2O_2$  spontaneous dissociation is energetically more favorable than the direct  $O_2$  dissociation in the general ORR mechanism, the resulted  $Co-2OH_{ad}$  site is subject to OH poisoning due to the high  $2OH$  adsorption energies.