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The density functional theory

= Hohenberg-Kohn's theorem & Kohn-Sham theory
= Levy's DFT (Density Functional theory)

The energy of the ground state is given by the minimum of an
Energy functional of the single-particle density.

Egs = l d°F Ve (r) Nes(r) + Flngs]
FIN] = min( @[T + V, /@)

The Kohn-Sham equation:

This equation is solvable by a high speed computation by
the Car-Parrinello method or CG.




The local density approximation I.

Let’s start from the Kohn-Sham equation.

h?
—%VQ + Veat(r) + vp(r) + vie(r) § dilr) = €ii(r)

Here, v, is the static electron-ion potential, vy is the Hartree potential given

by -y
vg(r) =fdr"L(r)

r—r'|’
and v, is given by the functional derivative
0Eyc[p(r)]
Vge\Y) = —(—F—~— -
W= )

The electron charge density p(r) is given as
p(r) =2 [gi(r)]*,

for a non-magnetic system. (In case of magnetic materials, we might utilize a
local-spin-density approximation which provides us an effective model with a
spin-dependent orbital ¢; .)

The local density approximation 1.

We need to evaluate E,. and v,. by approximate methods. The simplest
method is to use the local-density approximation (LDA).

In LDA, E,. is constructed from the exchange-correlation energy per electron
at a point r in an inhomogeneous electron gas, €,.(p(r)), which is given by that
of the homogeneous electron gas with the density p.

Eacr:[p(r)] - /dl' E;n(:(p(r))p(r) .

The functional derivative of E,. in LDA is obtained via the next calculation.

0Eq[p(r)] = [dr

Thus v, is given by,




The local density approximation I11.

The LDA energy functional is given by several authors. For example,

—

. Wigner (1938)

b

. Kohn and Sham (1965)

o

. Hedin and Lundqvist (1971),
4. Vosko, Wilk and Nusair (1980),
5. Perdew and Zunger (1981)

These parametrizations use interpolation formulas to link exact results for the
exchange-correlation energy of the high-density limit of the electron gas (given
by RPA) and the exchange-correlation energy of intermediate and low-density
electron gases obtained by some approximation methods or the Quantum Monte-
Carlo calculation.

Note: there are many attempts to overcome LDA, which include the Gener-
alized Gradient Approximation (GGA), meta GGA.
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The plane-wave expansion |I.

The Bloch theorem tells us that each wavefunction is given by,
Onx(r) = exp(ik - r)u, k(1) .

Here, k is a wave vector in the first Brillouin zone and u,, x(r) is a periodic function

satisfying w, x(r +1) = u,k(r). 1 is a lattice vector. A band index is represented
by n.
Since u, x can be expanded as

Uni(r) =D nx(G)exp(iG - 1),
G

with the reciprocal lattice vectors G, we have a plane-wave expansion of ¢,, x

gbn,k(r) = Z ¢n,k(G) exp(z(k + G) ) I‘) .
G

The plane-wave expansion II.

Using the momentum-space representation, the Kohn-Sham equation reads,

% l;—m[k + G[*0g,6 + Veat (G — G') + v(G — G') + v(G — G’)] Onic(G)

G/
— Z Hk(G-r Gf)én’k(G") = 8n,k¢n,k(G)
Iel]

We can obtain eigenvalues ¢, and eigenvectors ¢, x by diagonalizing a Hamil-
tonian matrix Hy (G, G').

 Dimension of the matrix can be O(103) or O(10%).
* The diagonalization is often performed using the Housholder method of the
conjugate gradient method (CG).

However,
* the process to find the ground state is regarded as an optimization process for
the energy functional in the function space.
The Car-Parrinello method (Conceptually different idea)




The pseudopotential 1.

To construct a pseudopotential, we need a pseudo-wavefunction whose radial
wave function RI'" satisfies e/'” = /'¥ and,

RFP(r) = R*E(r)  forr >y

and
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The pseudopotential 11.

The norm-conserving property of the pseudo-potential ensures that the loga-
rithmic derivative D; of the wavefunction is maintaind up to its first order deriva-
tive against the energy, when we construct the pseudo potential.

D, is defined as,

1 BR;(T; 8)
Ry(r;e) Or

D;(E) =

T=Tegal

The Kohn-Sham equation in a polar coordinate is,

RO U+ 1R
2m Or? 2mr2

+ 'Ueff('f')} rRy(r;e) = erRy(r;e) .

PP
We are searching for v!/; which satisfies that artificial a—?‘; of the pseudo wave-

) . ODAE . )
functions is the same as the —— The condition is identical to the norm con-

serving condition as follows.




The pseudopotential 111.

Making a derivative of the Kohn-Sham equation with respect to €. Multiply

rRi(r;€) to the result and subtract 'r% times the Kohn-Sham equation, we
have,
h? 0% OR)(r;e)  ORy(r;e) 0*
. 2_ v . I\ . I\ .
{rRi(r;e)}" = o [T‘Rg(?", £) 2 o "5 2 rR(r;e)| .

Integrate this expression with respect to r from 0 to r, we have

- n? oD
[ 1RGP rdr = =5 Rty

T=Tgl

Thus, if we keep continuity of the pseudo potential and the norm conserving con-
dition, the resulting pseudo potential reproduces the all electron results up to the
first order derivative around the reference energy where the pseudo wavefunction
1s given.

The pseudopotential 1V.

Once the pseudo-wavefunction is obtained, the screened pseudopotential is
recovered by inversion of the radial equation,

41 1 ci rRPP(r)] .

PP( \ _ a
Viera(r) = & 212 N 2rRFF (r) d

ser,l

To make a pseudopotential which is tranferable for a variety of environment,
we make an ionic pseudopotential by unscreening.

Vien(r) = Viemi(r) = Vig " (r) = V. (r) -

ser,l

Here VA* and V2T are the Hartree and the exchange-correlation potentials cal-
culated from the valence pseudo-wavefunctions. This is the unscreening process.




The pseudopotential V.

The ionic pseudopotential operator is given as,

f/ifnp(r) = Vz‘f:nl,)zomz(?') + Z Vnon!oca!,!ﬂ )
1

where V2P, (r) is the local potential and

ion,local

Vnmtocal,l (T) - Kf:n}?l(r) o mf:rftomt (T)
is the semilocal potential for the angular-momentum component / and P, projects
out the /th angular-momentum component.
The semilocal potential can be transformed into a nonlocal form by the
Kleinman-Bylander construction,

— |Vnonlocal,l (T) (I)fp’o (T» (@fp,fl (T) Vnonlocal,l (T)l
(@ (1) | Vaomtoar ()| @7 (1))

VKB (T)

nonlocal,l )

where ® () is the atomic pseudo-wavefunction.

Application for a metal

The band structure of Al (FCC)

The plane-wave expansion with a pseudo-potential
GGAPBEY96
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Covalent crystals I.

Diamond and Graphite as covalent crystals.
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Band structure of cubic diamond
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An energy gap appears and the system is a wide-gap
semiconductor.




Bonding charge in hex-diamond

In a covalent crystal,
we can see charge
density of electrons
at each bond
connection.

Yellow object
represents charge
density and white
spheres are carbons.

c* bands
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bands)

7* bands
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The =-band is half-filled and there are small
Fermi pockets both for electrons and holes. (Semimetal)




Bonding charge in graphite

Bonding charge
comes from o-
electrons.

This system is a
semimetal where
the Fermi surface
IS made of r-
bands.

Techniques in the molecular dynamics

Constant-Temperature Scheme (Nose & Hoover)

Average of the kinetic energy is made constant by
introduction of interaction between the system and an
imaginative heat bath.

An equation of motion with dissipative term written by an
artificial variable is solved.
Constant-Pressure Scheme (Parrinello & Rahman)

The volume (cell parameters) of the system is made a
variable.

MD and structural optimization is performed using the
enthalpy, H=E+PV.

Realization of realistic situation




The Hellmann-Feynman force

The force acting on the I-th atom F; is given by,

dFE
F; = _d—RI
d d d
— _Zi{((;s_d(d—mH)\(bf) +(E(¢5£UH‘¢> (¢ H( dR, = |9i)] -

Here E = 5;(¢:| H|¢;) is the Kohn-Sham energy.

When each electronic wave function ¢; is an eigenstate of the Hamiltonian,
H|p;) = €i|¢;), the last two terms (called the Pulay force) in the above expres-
sion cancel with each other. This is because,

. d (i)
(d_Rur(gp_,-_\)H\é-;) + (Qb-f‘H(d—m‘@) =€ dR

Thus the expression of the force becomes,

=0

z

() )

F;= —g(é-s!d—mm) ~ 4R,

The internal stress |

The expression of internal quantum stress is given by the same variational
method as force. We consider a many-electron system in a certain unit cell with
volume Q. The total energy is E({#x i(r)}, {Rs}). The variational principle
tells us that the ground state energy By, is the minimum of E({¢:(r)}, {Rs})

with respect to {;(r)}, {Rr}.
To derive the stress, we introduce a symmetric (rotation-free) two-rank strain
tensor, £. The infinitesimal homogeneous scaling given by & is applied as,

R; =& R; =(1+¢6)R;,
Yealr) = tha(r’) = det(1 + e inhis(x).
== The ground state energy changes as,
Eiot = E(€) = By + AE(g).




The internal stress |1

The shift in energy AE(e) is expanded in a series of the power of €. The
stress in the stress tensor & is defined as the coefficient of the first order in the
series and thus we have,

AE(g) = —Tr(o€)Qqy + O(€2),
1 BE(e)

Caf = — 57— 1
T Qoo Oap |y )

If the strain and the stress are isotropic, thedabove expression reduces to the

well-known theromdynamic formula, P = — .
dQeent

Due to introduction of the strain tensor €,4, which is a symmetric tensor, we have
a modified G to be (1 — &)G in the first order and Q. becomes det(1 + £)Q.cp-

Since Q.un(G) and S;(G) are invariant, we have the next expressions.
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We have introduced a reference coordinate of atomic positions, q;, which satisfies

R;(t) = (1 +&)ai(t).




The equations of motion for CP-FPMD

Here, we introduce the reference coordinates gy for the position of atoms and
let Ry(£) = (1 + &)aqu(t).

The Lagrangian proposed by Wentzcovitch is utilized. The equations of mo-
tion are given by the followings.

1 1
L = »omiqrdar — Bua({arh(t), &) + sWT('é€) — Pen,

1 .
q = —(1+¢)7'F; — dday,
L
£ = %(H — Pm)t(l + E)_I,
_ 1 1 aEtot
Il = Qw"):m;va; Qs Oe

The calculation scheme of FPMD at a constant pressure

Input:  Unit Cell {Ri}
Atoms {a} Molecul
Sm_JCt_Ural_ External Pressure P, ofecular
optimization dynamics
a=(1l+g) a . a=(1+9a

Wave Functions {¥} Kohn-Sham eq.
{ by CG method

HF Force {F}
Quantum Stress  {o}

' ¢

Convergence check Molecular Dynamics
| using {F}{o}

{R}{¢&} update *
{R}{} update

Optimized {#}{R}{s}




Graphite-diamond transformation in a FPMD
simulation

At ambient pressure

{ « White objects are carbon
atoms and yellow iso-
surfaces represent charge
density of electrons.

» We see new bonding
represented by bonding
charge between graphite
layers.

« Sliding of layers
occurs due to formation
of sp3 bond connections.




Graphitic structure stable in 40GPa range

 G-ball has a concentric
structure made of graphitic
sheets.

* The ball does not show
any structural
transformation up to ~
40GPa.

» The conductance of the Xy W i
ball becomes high at high dﬁ
pressure. 1000w g

TEM image of the graphite ball
by F. Kokai et al. (2001).

Lattice constants of graphitic system in high pressure

1. Calculation has been done
for hexagonal graphite with
AB stacking of graphene
layers.

2. Since we assume the
graphite structure in calc.,
no phase transformation

is seen and the structure

Is meta-stable up to 60GPa.

a, ¢/2 (A)

o 10 20 50 40
Pressure (GPa)

Exp: by Nakayama et al.




ESopt&(&

HERKEYHEMERRICTRHREINzoptZH LI
KERRFERETIFHAREBTELESNT-DD,
FEERERRRE
¥ERT > >+l (Norm-conserving P.P.)
R IERHE PWIl
EsoptlE4FIZLL T D Zopth o5 EHELITLNS,
Y—RO—+FDRFEEDES
REEBDLOEEHEZRFREILT HCCE

Characteristics of basis sets for DFT calculation

Plane-wave expansion method with pseudo-potentials

»  Since plane waves are independent of position of atoms, the result is
accurate with respect to the valence electrons.

» Accuracy of the calculation is determined by the maximum energy of plane
waves.

* The kinetic energy is diagonal in the Fourier space, while the potential
energy is diagonal in the real space. FFT is used to connect two spaces.

»  The Hellmann-Feynman force and the quantum stress are easily obtained.
FLAPW (Full-potential linearlized augmented plane wave)

» The wave functions in an atomic sphere are expanded in spherical waves.
Otherwise, they are written in the plane waves.

e Accuracy is determined by number of spherical waves and the maximum
energy of plane waves.

*  Less ambiguity compared to the pseudo-potential method.
»  Pulay force has to be evaluated.




